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Asset pricing in financial networks

Task: estimate future values/returns of financial assets by
modeling their interactions

* Assets are interdependent through various dimensions
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Asset pricing in financial networks

Task: estimate future values/returns of financial assets by
modeling their interactions

* Assets are interdependent through various dimensions
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Graph Networks as a
preferred tool



Dynamics in financial networks is largely ignored

Existing asset pricing models:
= fixed group of assets
= static relationship
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Dynamics in financial networks is largely ignored

Financial networks in the real world evolve continuously

Existing asset pricing models: e technical innovations
= fixed group of assets  corporate events
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Existing asset pricing models:
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Dynamics in financial networks is largely ignored

Financial networks in the real world evolve continuously

Existing asset pricing models: e technical innovations
= fixed group of assets  corporate events
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A framework that represents time-varying dynamics of financial markets is necessary



Dynamic graph representation learning framework via
Spatio-Temporal Attention and Graph Encodings (DySTAGE)




Dynamic graph representation learning framework via
Spatio-Temporal Attention and Graph Encodings (DySTAGE)
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representations across time for
individual assets



Dynamic graph representation learning framework via
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Dynamic Graph Construction from Time Series

Graph formulation

* Node: asset
* Node attributes: firm features
* Edge: strong long-term relationship

t t
¢ _ JPuo 1Puol > v
ﬂu,v - t
0 lpuol<v
* Edge attributes: multi-scale return correlations covering
short-term to long-term perspectives
* Monthly asset data: quarterly, semiannually, and
yearly trends
» Daily asset data: weekly, biweekly, monthly trends




Dynamic Graph Construction from Time Series

Graph formulation

* Node: asset
* Node attributes: firm features
* Edge: strong long-term relationship

t t
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ﬂu,v - t
0 lpuol<v
* Edge attributes: multi-scale return correlations covering
short-term to long-term perspectives
* Monthly asset data: quarterly, semiannually, and
yearly trends
» Daily asset data: weekly, biweekly, monthly trends

= Obijective: given a sequence of historical graphs G = (Gt ... G}, develop a model to predict future return
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Asset influence attention: Global interrelationship

Topological Module

= Multi-head attention to capture global

interrelationships between assets, non-existing
assets are masked

= Layer normalization and skip connections to
enhance optimization efficiency
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= Each elementin attention matrix: influence of assetutov
= Mg: negative mask matrix
» Mj: zero mask matrix
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Graph encodings with financial insights
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Graph encodings with financial insights

t

MatMul

*

SoftMax \

V1V V3 V4 Vg

3

V Scaled MatMul k

-

Linear Linear

te  1x fv

Asset Influence

Attention ¢

Linear

Pair-wise
Spatial Encoding

V1V9 V3 V4 Vs
V1 [
V2
U3 e
Uy
Vs

Edge-wise
Correlation Encoding

\

1711,72 V3 l)4 Us

TEm

Node Feature

Asset-wise
Importance Encoding

The asset with a higher node degree implies a strong
correlation with a larger number of other assets, indicating its
potential market impact




Graph encodings with financial insights
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Graph encodings with financial insights
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Graph encodings with financial insights
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Temporal Learning

Temporal module:

investigate historical representations along the temporal
dimension for each node individually
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Research Questions and Datasets

Performance compared with other
dynamic and static methods

Graph representation learning
on asset patterns

Investment advice and profitability
in real-world scenarios

Contribution of each
component in DySTAGE

Table 1: Summary of Statistics for Dynamic Asset Graph Datasets. Each entry details the snapshot counts, total nodes appearing
across the entire time range, average number of edges per snapshot, feature counts, time lag, horizon, data collection frequency,

and time span.

Dataset # Snapshots # Nodes #Edges # Features Lag Horizon Frequency Range

Russell 3000 193 2,151 1,290K 166 12 Monthly Jan 2000 - Dec 2021
MLFI 172 990 387K 93 12 Monthly Jan 2000 - Mar 2019
S&P 500 2,396 460 123K 24 20 Daily Jan 3, 2011 - Dec 31, 2020




Performance on Asset Pricing (RQ1)

Table 3: Comparison results from benchmarks and our model. MAPE resuls are in the form of percentage (%).

Type Model Russell 3000 MLFI S&P 500

RMSE MAE MAPE | RMSE MAE MAPE | RMSE MAE MAPE

ARIMA 0.1798 0.1422 117.8364 | 0.1254 0.0970  87.0359 | 0.0223 0.0178 17.8370

Time Series N-Beats | 0.1327 0.1050 83.8827 | 0.1005 0.0793 69.7604 | 0.0195 0.0158  15.8619

GAT 0.1073  0.0874  66.3047 | 0.0802 0.0651 55.6068 | 0.0154 0.0131 13.1286
GraphSAGE | 0.1060 0.0864 65.4026 | 0.0811 0.0656 56.0802 | 0.0156 0.0131 13.1464
ARMAConv | 0.1081 0.0877 66.2636 | 0.0808 0.0653 55.8012 | 0.0158 0.0133  13.2557

UniMP 0.1078 0.0853  64.1338 | 0.1078 0.0853  64.1331 | 0.0156 0.0134 13.3536

Static GNN

DySAT 0.1039 0.0840 63.2542 | 0.0806 0.0652  55.7200 | 0.0155 0.0132 13.2118
DY-GAP 0.1357 0.1089  87.7335 | 0.0806 0.0652  55.7378 | 0.0155 0.0131 13.0723
T-GCN 0.1078 0.0882  67.0031 | 0.0813 0.0657 56.0604 | 0.0168 0.0145 14.5104
Dynamic GNN | EvolveGCN | 0.1064 0.0845 63.5845 | 0.0806 0.0651 55.5625 | 0.0155 0.0132  13.1989
GCLSTM 0.1033  0.0839  62.9582 | 0.0807 0.0650  55.5467 | 0.0156 0.0134  13.4025

DyTed 0.1040 0.0844 63.3368 | 0.0800 0.0647 55.3379 | 0.0155 0.0132 13.1666

DGIB 0.1031 0.0837 62.8114 | 0.0802 0.0649 55.4483 | 0.0154 0.0131 13.0751
DySTAGE | 0.1026 0.0833 62.5027 | 0.0797 0.0644 54.9632 | 0.0154 0.0131 13.0602




Portfolio Management (RQ2)

Invest in long positions on assets with top 10% highest predicted excess returns and assign them equal weight

Table 4: Portfolio management results on the three datasets. CR and AR are in the format of percentage (%). T means the larger
the better.

Russell 3000 MLFI S&P 500

CR(%)T AR(%)T SRT |CR(%T AR(% T SRT |CR(%T AR%) T SRT
ARIMA 42.1388 20.1368 1.0047 0.9074 0.5435 0.1198 17.6767 12.1484  0.7275
N-Beats 49.5191 23.3519 1.1667 9.2134 5.0084 0.4069 25.9006 18.0936 1.0282
GAT 42.7684  20.4142 1.1837 8.0401 4.7492 0.3549 10.5096 7.4825 0.5219
GraphSAGE | 49.8937 23,5131 1.2077 | -0.7568 -0.4547 0.0483 24.5304 17.1641 0.9445
ARMAConv | 25.7004 12.6751 0.7184 -0.5407 -0.3247 0.0675 14.1315 10.0146 0.6152
UniMP 40.0290 19.2031 1.0231 5.8182 3.4514 0.2748 15.6653 1.0802 0.7083
DySAT 37.9606 18.2812 1.0156 -0.3293 -0.1977 0.0808 | 23.3353 16.3512  0.9530
DY-GAP 40.8272 19.5572 1.1609 9.8075 5.7740 0.4285 19.0134 13.3927 0.8330
T-GCN 35.7086 17.2698  0.9543 7.6595 4.5486 0.3626 6.0337 4.3211 0.3410
Dynamic GNN | EvolveGCN | 29.7708 14.5642  0.8721 2.2540 1.3464 0.1611 5.1677 3.7051 0.2837
GCLSTM 41.9357 20.4726 1.0616 -3.2744 -1.9777  -0.0330 8.0919 5.7793 0.4216
DyTed 40.1514 19.2575 0.9667 -0.7692 -0.4622 0.0643 9.4853 6.5678 0.5208
DGIB 29.2723 14.3344  0.9369 6.1102 3.6226 0.3047 8.5284 6.0876 0.4149
DySTAGE 50.3428 23.7152 1.1975 | 10.2829 6.0486 0.4614 | 31.5506 21.8969 1.2945

Type Model

Time Series

Static GNN

* DySTAGE consistently generates the highest return with strong balance between profitability and risk
management, offers lucrative investment recommendations in real-world scenarios



Graph Learning (RQ3)

Ablation Study (RQ4)

Absolute Return Difference

t-SNE

20% - [Stock A- Stock B| Model Russell MLFI __ S&P
o, el | AT w/o Importance | 62.7537  55.3018  13.0674
° w/o Temporal 62.6115  55.0411  13.1801
10% w/o Spatial | 62.5868 54.8906  13.0734
N 5 w/o Edge 62.5943  54.9654  13.0690
. = T DySTAGE | 62.5027 54.9632 13.0602
0% ; | | .
1 2 3 4 5 6 7 8 9 10
Time
= e s = = : =2l » Temporal module significantly boosts the
] lta, | L performance, while DySTAGE equipped
. 3 < | 3 solely with the topological module is
t=1 t=2 t=7 t=8 t=10

remarkably powerful

» All graph encodings contribute to the
model improvement. Asset-wise
Importance encoding is the most
influential component

Spatial distribution in embeddings effectively mirrors the actual
financial performance disparities.



We introduce DySTAGE, a novel
dynamic graph representation
learning framework for asset

pricing.

Conclusion

DySTAGE effectively captures
both topological and temporal
patterns, utilizing graph
encodings within the financial

network.

Extensive experiments proves

the superiority of DySTAGE over

conventional and popular

benchmarks in predictive
accuracy
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