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ABSTRACT 
The increasing popularity of crypto assets has resulted in greater cryptocurrency investor interest and 
more exposure in both industry and academia. Despite the substantial socioeconomic benefits, the 
anonymous character of cryptocurrency trading makes it prone to abuse and a magnet for illicit purposes, 
which cause monetary losses for individual traders and erosion in the standing of the tokenomics industry. 
To regulate the illicit behavior and secure users' privacy for cryptocurrency trading, we present an 
Anomaly Detection and Privacy-Preserving (ADPP) Framework integrating blockchain and deep learning 
technologies. Specifically, ADPP leverages blockchain technologies to build a user management platform 
that ensures anonymity and enhances the privacy-preservation of user information. Atop the user 
management system, an Anomaly Detection System adapts neural networks and imbalanced learning on 
topological cryptocurrency flow among users to identify anomalous addresses and maintain a sanction list 
repository. The experiments on the real-world dataset demonstrate the effectiveness and superior 
performance of ADPP. The flexible framework can be easily generalized to the crypto assets with public 
real-time transaction (e.g., Non-fungible Token), which takes up a significant proportion of market 
capitalization in the domain of tokenomics. 
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1. INTRODUCTION 
There are over 20,000 cryptocurrencies with over 1 trillion of total market capitalization, as of 
June 2022 [1], revealing the trend of technological innovation to digitize in the 21st century global 
economy. The continued evolution and popularity of cryptocurrency is happening for a reason: it 
enables efficient payment systems where trading is independent of any political interference or 
governmental regulatory bureaucracy, occurring rather through a decentralized distributed ledger. 
Yet there exists, for a long time, a discourse regarding the process in which cryptocurrency 
transactions can be regulated to prevent criminality. In fact, since its booming, a widespread illicit 
behavior in the cryptocurrency markets has been recorded as hackers engage in phishing attacks 
and attempt to steal credentials of traders and other sensitive privacy data, such as account 
information. These unlawful activities are especially prevalent in the Bitcoin market, with more 
than one-quarter of all users and close to one-half of bitcoin transactions being associated with 
illegal activities in 2017 and around 76 billion in illegal transactions annually [2]. Developing 
countermeasures to mitigate cybercriminality and the illicit use of cryptocurrencies is hence an 
exceptionally important task to ensure integrity of their transactions and continued evolution of 
the digital assets market. 



As policymakers focus on regulatory matters, it seems also prudent for researchers and 
practitioners to explore technological remedies through user management platforms that can 
ultimately enhance the security and preserve the integrity of data and identity as well as to stave 
off any potential cybercriminality at the very beginning stages. Nonetheless, user management 
itself is a challenging task due to the diversification of end-use applications where one individual 
may have multiple virtual identities. Some solutions, like OpenID, can provide more simplicity 
allowing a single sign-on function to access different web service providers. In fact, lacking 
complete self-management for identities and privacy-preserving of sensitive information still 
remains an important open question to be addressed. One approach toward this end has been the 
use of traditional Public Key Infrastructure (PKI). However, the PKI may suffer from data loss 
and corruption due to the problem of centralized management, such as a Single-Point-of-Failure 
(SPOF). Others, like the Liberty Alliance Project [3], advocate for federated authentication 
techniques. Such federated methods, although breaking down the centralized management to 
several trusted circles, still do not fully resolve the issue when the management systems (i.e., 
service providers) shutdown and become unavailable. Blockchain technology, however, has 
proven to be effective in many fields yet has not been sufficiently applied to user management 
systems toward mitigating illicit behavior in cryptocurrency trading. 

More diverse countermeasures can certainly be coupled with the above-mentioned security-
enhanced and privacy-preserving identity management platform to increase effectiveness. As a 
primary preventative approach, detection-based countermeasures is a promising solution. These 
methods require historical transactions of cryptocurrencies (e.g., Bitcoin) and assume that illicit 
transactions happened in the first place. Through the training, the anomaly behavior will be 
identified accurately; hence, any future cybercriminality can be prevented. Machine learning 
algorithms and more recently neural networks, especially Graph Convolutional Networks (GCN) 
[4] and Gated Recurrent Units (GRU), are proposed to train an intelligent detection system that 
can evolve over time. These approaches can analyze based on various characteristics, e.g., 
topological networks and temporal interactions, yet they also easily suffer from an imbalanced 
class problem. However, findings reveal that they consider only part of these features and are not 
capable of learning in a comprehensive view. 

Drawing on the above insights from the study, we propose an Anomaly Detection and Privacy-
Preserving (ADPP) Framework which fully capitalizes on the advantages of blockchain and deep 
learning techniques for cryptocurrency trade. First, leveraging the Self-Sovereign Identity (SSI) 
framework that gives individuals control over their own identities, ADPP uses blockchain 
technologies to build a user management platform with a workflow of provision, issuance, and 
verification. It reduces the loss caused by unidentified users and enhances privacy-preserving of 
user identity information protection.  

Besides, the Anomaly Detection System (ADS) is smoothly integrated into the platform to 
regulate the trade behavior of the crypto market. The nature of ADS is a binary classification deep 
model aiming to detect potential illicit addresses. It leverages GCN, GRU, and imbalanced 
learning to learn topological and dynamic cryptocurrency transaction networks. The suspicious 
illicit addresses detected by ADS are added to the sanction list repository. ADPP will trigger a 
warning if illicit addresses are detected during the verification process before two parties start the 
trade.  

The experiments on a real-world dataset demonstrate the effectiveness of ADPP. The flexible 
framework can be generalized to those crypto assets which have public real-time transactions with 
addresses and features in the market, such as cryptocurrencies and Non-fungible Tokens (NFTs). 
Such crypto assets take a significant proportion of market capitalization in the domain of 
tokenomics. The main contributions of this paper can be summarized as follows:  



1. The blockchain-based privacy-preserving authentication platform leverages the 
cryptographic technologies on blockchain ledger to authorize validated users for 
cryptocurrency trading without leaking users' privacy.  

2. Anomaly Detection System based on GCN, GRU, and imbalanced learning captures 
topological patterns and dynamic changes of cryptocurrency flow between users. It aims 
to detect potential illicit addresses and maintain a Sanction List Repository to prevent 
illicit behaviors.   

3. To the best of our knowledge, we are the first to integrate a privacy-preserving 
authentication platform with a cryptocurrency anomaly detection model based on deep 
learning. The resulting work effectively mitigates cybercriminality by enhancing privacy 
and identifying potential illicit addresses. This integration can similarly be generalized to 
other crypto assets. 

The remaining parts of this paper are organized as follows: Section 2 provides an overview of 
related works. Section 3 introduces the technical background. Section 4 presents the architecture 
of the proposed platform, detailed system design with core internal workflow, algorithmic 
protocol, and a deep learning model-based anomaly detection system. Section 5 presents the 
experimental results and critical analysis. Finally, Section 6 offers concluding remarks and 
presents research challenges and opportunities to motivate future work. 

2. RELATED WORKS 
In this section, we introduce related work from three perspectives: identity provider-based 
platform, anomaly detection model and any studies that integrate blockchain-based privacy-
preserved platform with deep learning technologies. The discussion discloses the dearth of prior 
research in privacy-preserving frameworks with functionality of detecting anomaly, and an urgent 
need to apply Blockchain technology for protecting user privacy. 

2.1. Identity Provider Based Platform 
Cross-platform and privacy-preserving are two major considerations in terms of designing a 
identity management system. Aiming toward cross-platform identity management, Microsoft 
experimented with Identity Management (IdM) on Microsoft.NET Passport [5], allowing users to 
log in to multiple service providers' websites with the same identity provided by Microsoft as the 
Identity Provider (IdP). The IdP allows users to access the different websites and redirects to 
different user profiles through the identity managed by the IdP. However, the drawbacks of 
centralized management are apparent, as all service providers and customers are affected if the 
Identity Provider (IdP) becomes unavailable or as a result of data loss and corruption. To tackle 
the problem of centralization, the Liberty Alliance Project [3] made another attempt at the IdP to 
build a federated network identity management. It advocates for a federated IdM method, which 
focuses on establishing trust circles between service providers and federated isolated customers. 
However, the problem with federated IdM is that once an authenticated service provider is 
unavailable, customers will not be able to access the resources of that provider. From the security 
perspective, OAuth (Open Authorization) [6] allows service providers' websites to safely access 
various identity information stored in the IdP with the user's authorization. In the authentication 
process, the customer can access the service provider's website without providing their account 
password but in the form of a token to the service provider's website. OAuth is widely used in the 
current internet environment since its usability and performance are improved. However, OAuth 
still suffers from some security vulnerabilities [7]. Another disadvantage of the OAuth framework 
is that the IdP serves as a centralized identity provider, which in some situations may yield data 
loss. For instance, if when accessing any website using OAuth provided by Google and it blocks 
that service provider, the customer will lose the access rights and data on that website. 



2.2. Anomaly Detection 
Artificial Intelligence has been increasingly playing an essential role in detecting and preventing 
cybercrime [8]. Standard machine learning algorithms (e.g., Random Forest [9]) can be applied 
to anomaly detection tasks which, by its nature, are binary classification problems. Such 
algorithms are demonstrated to be effective [10, 11]. These methods can extract phishing fraud 
features from the data collected and show a stable performance, however, they do not leverage 
any graph information. Since cryptocurrency trading can be naturally formulated as a transaction 
graph, a line of work [12, 13, 14] employed graph-based algorithms to detect illicit behavior. With 
the continued growth of deep learning, graph neural networks, such as GCN [4] and graph 
attention networks (GAT) [15] have been applied to detect malicious transactions. Based on an 
analysis of the weaknesses of attackers a heterogeneous graph neural network with an attention 
mechanism is also proposed [13]. The main drawback of the graph-based algorithms is the neglect 
of the temporal dependencies of multivariate time series data as identifying an anomaly in real 
time is a known challenge due to the frequency of seasonal behavior or a change in trend [16]. 
Statistical models, such as Autoregressive Integrated Moving Average (ARIMA) [17], and 
recurrent neural networks, such as Long Short-Term Memory (LSTM) [18] and GRU [19] are 
common approaches to address the temporal dependencies. Another challenge is the imbalance 
problem in the transaction dataset where illicit transactions are minority and only occupy a small 
portion of the whole. Some existing work leverages the imbalanced learning techniques: sampling 
methods drop majority samples or repeat minority samples randomly to control the imbalance 
ratio directly [20]; and re-weighting algorithms adaptively assign and adjust the weight on 
samples based on their classification performance [21]. The advantage of our work over existing 
approaches is that we consider both temporal dependence and the imbalance problem in anomaly 
detection. 

2.3. Blockchain-Based Privacy-Preserved Platform Integrated with Machine 
Learning (ML)/Deep Learning (DL) 
There exists some efforts toward integrating blockchain with ML/DL techniques. A privacy-
preserving framework in smart power networks has been presented [22]. Specifically, a 
blockchain-based two-level privacy module is designed to verify data integrity and LSTM is 
employed for anomaly detection. A similar idea is proposed [23], where a two-level privacy-
preservation approach with a blockchain module to transmit data and a standard machine learning 
algorithm (i.e., Principal Component Analysis) for data transformation is designed. Such 
integration of blockchain with the ML technique is applied into Internet of Things (IoT)-driven 
smart cities. However, we found no work that integrates blockchain with ML/DL in 
cryptocurrency trading. Additionally, the integration frameworks proposed are generally tailored 
for specific domains and thus difficult to migrate to other fields.   

3. TECHNICAL BACKGROUND 
In this section, the basic underlying knowledge regarding privacy in cryptocurrency trading and 
blockchain-based identity management framework will be described. In addition, the deep 
learning algorithms that we build upon are described. 

3.1. Privacy Preserving 
Privacy preserving involves two aspects. (1) Transaction Privacy refers to the identity 
information in transactions of cryptocurrency trading, which is essential since the transactions are 
published on a public blockchain. To achieve anonymity and protect transaction privacy, 
cryptocurrency platforms, such as Bitcoin, use the address as the presentation for the trading 
parties, usually called pseudonymous, to hide the real identity information of both parties. The 
addresses are essentially the hash values of the public keys of both parties. (2) Identity Privacy 



refers to the identity information of the two parties of a cryptocurrency transaction in the real 
world. Although the user's identity in a cryptocurrency transaction is not associated with the 
identity in the real world, there are still some situations that may result in identity privacy leaking. 
For instance, by leveraging clustering and other technologies to analyze a transaction, find out the 
transaction relationship map between different accounts, and infer the input and output of the 
transaction, the real identity information of the two parties can finally be targeted. Since the 
blockchains for cryptocurrency trading use pseudonym addresses to protect transaction privacy, 
the framework proposed in this paper mainly focuses on identity privacy. 

3.2. Self-Sovereign Identity 
Self-Sovereign Identity (SSI) is a novel distributed identity management framework that gives 
individuals control over their digital and physical identities and is mostly built upon a blockchain. 
Traditionally users manage their digital identities either through their accounts on each identity 
provider, or by relying on a manager of different identity providers such as Google Sign-In. 
However, traditional methodologies result in (a) neither identity providers allowing users to 
control their information themselves; and (b) a limitation if users want to present their identity 
information to other individuals or service providers. In the latter case, the identity providers, who 
have full control, must provide approaches for the verification process. In other words, the users 
cannot control the information presented. In an SSI system, contrarily, if a particular identity 
provider authorizes the identities, these are maintained by the individuals, not the provider. To 
achieve individual control over identity information, SSI employs blockchain technology: the 
identity providers can publish their cryptographic authentication on the Distributed Ledger 
Technology (DLT); thus, other individuals can cryptographically verify the identities without 
interaction with the identity providers. 

There are two major standard specifications. (1) Decentralized Identifiers (DID) is a W3C 
standard specification [24] for SSI. A DID can be resolved to a DID Document that provides the 
subject's identifying information (to whom the DID belongs). The DID Document contains the 
subject's authentication information, such as the public keys needed to validate the subject's 
signature. It also includes service endpoints that identify the URL where the subject's verification 
information can be retrieved. (2) Verifiable Credential (VC) is a W3C standard specification 
[25] for DID-based cryptographically verifiable digital credentials. It can represent the same 
information as a physical credential. With blockchain technologies, a VC can be issued by an 
issuer in a more tamper-evident and trustworthy method to a holder. A VC contains claims about 
the holder, certified by the issuer.  

In addition, Wallet is an application that generates private and public key pairs and securely stores 
the key-pairs. The private keys can be used to prove ownership of DIDs and VCs 
cryptographically. The received credentials are also stored in the wallet. 

3.3. Graph Convolutional Network 

Traditional convolutional networks capture local information by a sliding filter on images or grids. 
GCN is the generalization form of convolutional network on graphs, which extracts the 
topological features to generate new node representations. It automatically learns not only the 
characteristics of central nodes but also the associated information from connected neighbors. 
Given an undirected graph 𝐺 = (𝑉, 𝐸) with 𝑁 = |𝑉| nodes and 𝑀 = |𝐸| edges, 𝐴 ∈ ℝே × ே  is 
the adjacency matrix of 𝐺 where each element 𝐴௜,௝ is 1 if node 𝑖 and 𝑗 is connected, 0 otherwise. 
𝑋 ∈ ℝே × ௉ is a feature matrix. GCN is denoted as: 

𝑋௧
ᇱ = σ൫𝐴௧෢𝑋௧𝑊௧൯,  𝐴௧෢ = 𝐷௧

ିଵ
ଶ(𝐴௧ + 𝐼)𝐷௧

ିଵ
ଶ (1) 

where 𝐴መ  is the adjacency matrix normalized by the neighbors' degree. The self-loop constant 
matrix 𝐼 considers the influence of the node itself. The degree matrix 𝐷 ∈ ℝே × ே is a diagonal 



matrix composed of node degrees. 𝑊  is a trainable weight matrix and σ(⋅)  represents the 
activation function. We refer the reader to [4] for more details. 

3.4. Gated Recurrent Units 
GRU is simple, yet effective and fast to obtain time series patterns. Let 𝑋௧ denote the training 
input. The key design of GRU consists of reset gate 𝑅௧  takes account of short-term memory, 
determining how much the previous states are kept. Update gate 𝑍௧ is responsible for long-term 
memory, controlling how much new information to pass along into the future. 

𝑅௧ = σ(𝑋௧𝑊௫௥ + 𝐻௧ିଵ𝑊௛௥ + 𝑏௥) (2) 

𝑍௧ = σ(𝑋௧𝑊௫௭ + 𝐻௧ିଵ𝑊௛௭ + 𝑏௭) (3) 

𝐻௧෪ = 𝑡𝑎𝑛ℎ(𝑋௧𝑊௫௛ + (𝑅௧ ⊙ 𝐻௧ିଵ)𝑊௛௛ + 𝑏௛) (4) 

𝐻௧ = 𝑍௧ ⊙ 𝐻௧ିଵ + (1 − 𝑍௧) ⊙ 𝐻௧෪ (5) 

where 𝐻௧ିଵ is the hidden state at 𝑡 − 1, 𝑊௫௥, 𝑊௛௥, 𝑊௫௭ and 𝑊௛௭ are weight parameters, 𝑏௥ and 
𝑏௭ are the bias parameters. Sigmoid function σ(⋅) maps the value to the interval of (0,1). 

To incorporate the effect of reset gate 𝑅௧ , candidate hidden state 𝐻௧෪  is constrained by the 
activation function in the interval (−1,1). The element-wise product operator ⊙ controls which 
matrix to remove from the previous time step. If entries in 𝑅௧ are close to 0, then it ignores 𝐻௧ିଵ 
and focuses on 𝑋௧ only. Finally, the update gate 𝑍௧ determines how much information from 𝐻௧ିଵ 
and 𝐻௧෪ to be included in 𝐻௧. Suppose the update gates in all time steps are 1, then the hidden state 
of the beginning will be kept and passed to the final output, no matter how long the period is. We 
direct the readers to [18] if interested. 

4. ADPP 
4.1. The Architecture of ADPP 

 
Figure 1. ADPP Architecture 

 



Figure 1 presents the architecture of ADPP. ADPP defines three entities. (1) Trusted Committees 
(TCs) have the highest authority. They are pre-selected and pre-configured in the blockchain and 
host the other two consortium DLTs. An example TC can be the U.S. Securities and Exchange 
Commission (SEC). (2) Trading Providers (TPs) are authorized by a TC. An example TP can 
be Coinbase. It obtains licence from SEC and issues credentials to its customers. (3) Peer 
customers (PCs) are users who trade cryptocurrencies with each other in the ADPP after 
authorized by a TP. 

ADPP has five components. (1) Anomaly Detection System (ADS) is responsible for detecting 
suspicious anomalous addresses. (2) Sanction List Repository (SLR) maintains addresses of 
anomalous customers that are caught by ADS. (3) Peer Customer Distributed Ledger 
Technology (PC-DLT) stores transactions that record the credentials issued by TPs to the PCs. 
(4) Trading Providers Distributed Ledger Technology (TP-DLT) is used to store transactions 
that a TC authorizes a TP. (5) Virtual Broker (VB) is a suite of middleware. It can be a web 
application containing some subsystems that leverage RESTful API and Web Service to provide 
the entities with certain features, such as provision, issuance, verification, and key management. 

The workflow of ADPP is shown in Figure 1. TCs first complete their initialization and provision 
process. TCs can then evaluate and authorize TPs who apply to establish a trading platform. Once 
a TP is authorized, a corresponding blockchain transaction is published on the TP-DLT. 
Authorized TPs then issue VCs to their customer PCs through blockchain transactions on the PC-
DLT. With more transaction data available, ADS learns anomalous behaviors from crypto 
transaction data. The suspicious illicit addresses detected by ADS are added into SLR. When two 
PCs want to trade cryptocurrency, they can verify each other's credentials and check whether the 
counterparty is in the SLR. Note that ADS can either be maintained by TC or the TP consortium. 

4.2. Privacy-Preserving Authentication Platform 
As shown in Figure 2, our blockchain-based privacy-preserving authentication platform allows 
users to regain control of identities and personal data to a certain extent. A decentralized key 
management system is integrated into the system to allow trading institutions to issue credentials 
to valid users. Only authenticated users are allowed cryptocurrency trading. 

4.2.1. Provision 

(1) TC Provision: All TC committee members are pre-selected, and the verifiable cryptographic 
information is stored in the genesis block of the TP-DLT. (2) TP Provision: A TP can use the 
tools provided by the TC to generate a key pair and a DID. The DID is linked to the key pair by 
using the public key as a unique identifier in the DID. The registration of the TP’s DID with the 
TC is completed off-chain by submitting the public key and other information directly to the TC. 
When the off-chain authorization is completed, the TC writes a transaction into the TP-DLT, 
indicating that the TP is authorized and can issue credentials to PCs. Then the TP creates and 
registers a credential schema in the PC-DLT. The credential schema describes the set of attributes 
for a particular certificate. The schema defines what information a PC requires to trade in the TP's 
platform. Based on the credential schema, the TP creates and registers a credential definition in 
the PC-DLT. The TP's identity information and the cryptographic attributes is bound to the 
credential schema and will be used to verify the credential. (3) PC Provision: A PC downloads a 
wallet and generates a key-pair and a DID. The key-pair is stored on the mobile device and must 
only be accessed by the PC’s password or biometric authentication. 



 

4.2.2. Credential Issuance 

A PC obtains a verifiable credential from a TP. Verifiable credentials must contain the PC’s 
information affirming the PC is legal to perform a particular cryptocurrency trading. If a credential 

Figure 2. Protocol Description 

ADPP Proposed Protocol Description

Dashed arrows: a value from Ledger 

Green: interaction with wallet 

Blue: interaction with PC-DLT Ledger

Black: communication between           
            Issuer/Holder/Verifier



schema for a particular kind of cryptocurrency has been registered on the PC-DLT and the PC 
wants to acquire a credential for trading that cryptocurrency, the PC will send a credential schema 
request to the PC-DLT to use the existing schema. Otherwise, the PC must contact the TP about 
registering a new schema. Once the PC receives the credential schema from PC-DLT, it can 
provide its DID and the value of required attributes in the schema and send a credential request 
to the TP. The validation process for the PC's information in the credential request is excluded 
from the scope. The TP ensures that the information provided by the PC is correct and places the  

4.2.3. Credential Verification 

Before two PCs trade cryptocurrency, mutual authentication is required. In a one-way 
authentication, the verifier PC sends a proof request for particular attributes to the holder PC. For 
example, in the case of Bitcoin trading, the proof request must contain the address attribute for 
Bitcoin transactions, along with a valid credential issued by a TP. After the holder PC receives 
the proof request from the verifier PC, it checks whether it has a corresponding schema containing 
the requested attributes. If yes, the holder PC can generate a presentation of the credential, which 
contains the requested attributes, and sends the presentation to the verifier PC. The verifier PC 
first checks whether a trustworthy TP has issued the credential contained in the presentation. Then 
it verifies whether the presented attributes in the proof suffice the request. In the Bitcoin case, the 
verifier will check whether a TP authorizes the holder’s address for a Bitcoin transaction. Both 
parties will also check whether the counterparty is listed in the SLR. 

4.3. Anomaly Detection System 
The anonymous character of cryptocurrency trading is often abused for illicit purposes, such as 
ransomware, scam, terrorism, etc. PCs that initiate or receive cryptocurrency transactions with 
such illegal behaviors are categorized as anomalous users. To prevent malicious usage of 
cryptocurrency, ADS is designed as a binary classification model that formulates cryptocurrency 
transactions into graphs, aiming to identify anomalous addresses and add them to the SLR. 

4.3.1. Graph Formulation 

Information regarding cryptocurrency transactions between addresses is publicly available. Each 
transaction is associated with a sender address, a receiver address, a time stamp, and a number of 
features. The time stamp from raw data indicates the specific time when the cryptocurrency 
blockchain confirms the transaction. The confirmation time varies from minutes to hours, 
depending on the network. A time step in our model is defined as an interval of multiple days, 
which includes multiple time stamps so that various transactions in this interval can be graphically 
aggregated. The transaction features, such as transaction volume, cryptocurrency value, and 
transaction fee, are shared by both addresses.  

At each time step 𝑡, cryptocurrency transactions in this step are used to construct an undirected 
graph 𝐺௧ = (𝑉௧, 𝐸௧)  with adjacency matrix 𝐴௧  and node features 𝑋௧ . Each edge ൫𝑣௧,௔, 𝑣௧,௕൯ 
represents the flow of cryptocurrency in a specific transaction, the nodes 𝑣௧,௔ and 𝑣௧,௕ represent 
the sender address and receiver address in this transaction, respectively. If there are multiple 
transactions between two addresses in the time step 𝑡 , the edges and the nodes can be 
differentiated by transaction id. There are two types of node features 𝑋௧: transaction features 
shared by the same edge, and the aggregated features derived from neighbors of node in the 
transaction network (e.g., statistics of neighboring transactions, the length of the transaction chain, 
etc.)  

Therefore, given a set of graphs in the historical 𝑇  time periods, we can learn an anomaly 
detection model 𝐹 to classify whether each node in the graph at time step 𝑡 is problematic or not. 
𝑌௧෡ = 𝐹(𝐺௧ି்ାଵ, … , 𝐺௧) is a set of predictions for the nodes 𝑉௧ . Each element 𝑌௩,௧෢ ∈ {0,1} is a 
binary value, 1 if 𝑣௧ is anomalous, 0 otherwise. 



4.3.2. Anomaly Detection Model 

To extract topological dependence and temporal dynamics simultaneously from transaction 
networks, ADS integrates GCN with GRU, which are introduced in the previous section, into a 
sequence of layers, as shown in Figure 3. For a single layer from time step 𝑡 to 𝑡 + 1, both feature 
matrix 𝑋௧ and adjacency matrix 𝐴௧ are first fed into GCN; then the output 𝑋௧

ᇱ becomes the input 
of the GRU. 𝐻௧ is the output of the current layer, and is fed as the input to the next layer. At the 
last time step, a function 𝑓 concatenating Multilayer Perceptrons (MLPs) and activation functions 
maps 𝐻௧ to the interval (0,1). Each row of the output 𝐻௧

ᇱ = 𝑓(𝐻௧) ∈ ℝே×ଶ contains two values 
representing the probability of each node belonging to two classes. The final prediction 𝑌௧෡ ∈ 𝑅ே 
denotes the class with higher probability. 

The node classified by the model represents the address in a specific transaction. An address may 
appear in multiple nodes which corresponds to different transactions. If an address is detected as 
anomalous in any node, it is treated as an anomalous address and will be added into the SLR, 
considering an illicit address can also conduct legal transaction but a one-time good behavior 
won't make it a licit address. 

 
Figure 3.  Overall Structure of Anomaly Detection Model  

4.3.3. Enhancements Toward Imbalanced Class Problem 

The anomaly detection task often suffers from an imbalanced class problem which shows a highly 
skewed class distribution. In our task, the proportion of malicious addresses is far less than the 
licit ones. To deal with this issue, ADS implements two enhancements in the proposed networks. 
For the simplicity of notation, the time step 𝑡 is omitted. 

Sampling Procedure is designed to balance the class of samples. Before training the networks, 
a subset of nodes is randomly sampled to construct the subgraph. The sampling probability for 
each node is determined by two aspects. (1) In bitcoin, the malicious node is the minority class, 
and the licit node is the majority class. The minority class is preferred to be chosen in the sampling 
procedure. (2) In the graph networks, the node with a larger degree is considered much more 
important. Such a node deserves to have a higher probability. Hence, the sampling probability 𝑃௩ 
for the node 𝑣 is calculated as follows: 

𝑃௩ =
𝑃௩

ᇱ

∑ 𝑃௩
ᇱ

௩
,  𝑃௩

ᇱ =
𝐷௩

𝑐௩
(6) 

Layer 1 Layer 2 Layer T

Graph Convolution  
Operations

GRU Cell

Temporal Graph Layer

MLP Activation Function



where 𝐷௩  is the degree of node 𝑣, 𝑐௩  is the total number of samples in the class that node 𝑣 
belongs to. The sampling probability is normalized so that the sum equals to 1. We randomly 
choose nodes with corresponding sampling probability by time steps to generate a set of subnodes 
and construct the subgraphs. ADS is trained by the subnodes. 

Cost-Sensitive Loss Function is employed to reduce the influence of the imbalanced class. It 
assigns weights to classes during the training process. We employ cross entropy in this binary 
classification task to optimize the model. Let 𝐶ଵ , 𝐶ଶ  denote the majority (licit) and minority 
(anomalous) classes respectively, |𝐶ଵ| and |𝐶ଶ| denote the total samples in each class, the weights 
αଵ and 𝛼ଶ are assigned to each class. The cost of missing an anomalous address is much larger 
than recognizing licit nodes as anomalous one. Hence, the weight for malicious samples 𝛼ଶ is set 
to be larger than 𝛼ଵ in the weighted entropy loss: 

ℒℯ𝓃𝓉𝓇ℴ𝓅𝓎 = αଵ
1

|𝐶ଵ| ෍ 𝑌௩
௩∈஼భ

log(𝐻௩
ᇱ ) + αଶ

1
|𝐶ଶ| ෍ (1 − 𝑌௩)

௩∈஼మ

log(1 − 𝐻௩
ᇱ ) ,  αଵ + αଶ = 1 (7) 

ℒ = λଵℒℯ𝓃𝓉𝓇ℴ𝓅𝓎 + λଶℒℒଶ,  ℒℒଶ = ||𝑊௚||ଶ
ଶ (8)  

where 𝑌௩ ∈ {0,1} is the true label of node 𝑣, 𝐻௩
ᇱ  is the probability of node 𝑣 being anomalous.  

Besides weighted entropy loss, L2 regularization ℒℒଶ is added to the loss function. It uses weights 
of GCN in all historical time steps as the constraint of model complexity. The L2 regularization 
helps prevent overfitting during the training process. 𝜆ଵ and 𝜆ଶ are penalty parameters to balance 
two types of loss. 

5. EXPERIMENTS 
Robust experiments were designed and carried out over real-world dataset to demonstrate the 
effectiveness of our proposed framework ADPP. 

5.1. Datasets 
Elliptic Data Set is released by Elliptic, a blockchain and cryptocurrency analytics company. It is 
the largest labeled cryptocurrency transaction data publicly available 
(https://www.kaggle.com/datasets/ellipticco/elliptic-data-set). The dataset is a bitcoin transaction 
network containing 203,769 nodes and 234,355 edges over 50-time steps. Each time step denotes 
an interval of 14 days. Each node is associated with 166 features, all of which are derived from 
public information and a label indicating whether it belongs to an illicit or licit class. The overall 
imbalance ratio of majority over minority class is approximately 10:1. Before the training process, 
the size of the dataset is shrunk to eighth of its original size by the sampling procedure. To tune 
the parameters and evaluate the performance, the dataset is split into training, validation, and test 
sets along time steps as the ratio of 31:5:13. 

5.2. Implementation Setting 
The two distributed ledgers in ADPP are deployed by leveraging Hyperledger Indy, an open-
source project for consortium blockchain [26] and is funded by Linux Foundation. To fit the 
minimum number of nodes for a consensus model that can solve the Byzantine Fault Tolerance 
(BFT) problem [27]. The PC-DLT and TP-DLT are deployed on four TC nodes. 

ADS is implemented in PyTorch. Hyper-parameters are tuned based on the validation set of 
Elliptic Data Set. We use Adam [28] as the optimizer with 0.001 of learning rate, 800 epochs. 
The historical length of transaction graph 𝑇 is set to 5. The dimension of GCN and GRU layers 
are set to 128. The penalty parameters 𝜆ଵ, 𝜆ଶ, and weighted entropy parameters 𝛼ଵ, 𝛼ଶ in the cost-
sensitive loss function are set to 1, 0.001, 0.35 and 0.65, respectively. 

https://www.kaggle.com/datasets/ellipticco/elliptic-data-set


5.3. Performance Analysis 
We implement ADPP on Elliptic Data Set to evaluate performance regarding precision, recall, 
and F1. Precision evaluates the percentage of nodes classified as illicit are indeed illicit. Recall 
measures the percentage of illicit nodes are correctly identified. F1 is a combination of two 
metrics. 

Figure 4 (a) presents the classification performance and the proportion of illicit samples over time. 
In the first six-time steps of the testing period, the performance of ADPP is steady at around 70% 
of precision, 50% of recall and 55% of F1 on average. It reveals that half of illicit addresses in 
the transactions are caught by the detection model. Note that the task is challenging given that the 
data is very imbalanced and only 10% of samples are illicit. Over time, the model achieves 80% 
of all metrics at 43rd step, demonstrating our model's effectiveness. Note that from the 44th to the 
47th step, the percentage of anomalous samples sharply decreases to almost 0, probably due to the 
shutdown of some dark markets. Correspondingly, the performance of our model decreases. 
However, ADS can still catch half of the illicit nodes at the cost of misclassifying some good 
nodes as problematic. We argue that it is much more important to detect anomalous addresses 
even at the expense of recognizing legal addresses as illicit ones, considering the latter case is less 
harmful.  

To quantify the efficacy of the enhancements towards imbalanced class problems, two variants 
of ADPP are implemented on the same test period of the Elliptic Data Set. Figure 4 (b) shows the 
variant without a sampling procedure in the training process. At the first period when there exists 
a dark market and a large number of anomalous addresses and transactions, 20% of them are 
missed by the variant compared with ADPP. During the shutdown of the dark market, the variant 
is not able to detect negative nodes. Compared with the variant in Figure 4 (c), which assigns 
equal weights on both classes in the loss function, i.e., 𝛼ଵ = 𝛼ଶ , the cost-sensitive learning 
enables ADPP to focus much on minority samples. It largely boosts the performance regarding 
Precision and F1. This demonstrates that our proposed ADPP framework is effective for 
extracting illicit patterns and identify anomalous addresses.  

 
Figure 4.  Anomaly detection performance results in testing periods over temporal dimension. 

The left subfigure (a) is the performance of ADPP. The middle subfigure (b) is the performance 
of variant of ADPP without sampling. The right subfigure (c) is the performance of variant 

without cost-sensitive learning. 

6. CONCLUSION  
This paper presents an anomaly detection and privacy-preserving platform (ADPP) integrating 
blockchain and deep learning techniques for crypto market trade. This blockchain-based privacy-
preserving authentication platform enhances the security and privacy of user information. The 
Anomaly Detection System identifies illicit addresses in the transactions. The detected illicit 
users/addresses are added to the Sanction List Repository to help regulate the behavior in the 
crypto market.  
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The experiments are conducted on real-world cryptocurrency transaction data. Over half of the 
illicit addresses in the transactions can be detected by ADS, whether it’s under the dark market or 
not. ADPP will trigger a warning if anomalous users in SLR are involved in a trade. It 
demonstrates the effectiveness of ADPP. It has a high potential for generalization ability to 
various crypto assets. 

7. LIMITATIONS AND FUTURE WORKS 
In the future, our work can be enhanced from three perspectives: (1) Our current work focuses on 
trade in the cryptocurrency market only. The improvement towards a universal framework for all 
types of crypto assets is a promising direction. (2) The performance of Create, Read, Update, and 
Delete (CRUD) operations in SLR can be further enhanced. For instance, the complexity of the 
searching operation can be reduced by adopting a probabilistic data structure such as bloom filter. 
(3) The training of ADS currently relies on external data. From our existing DLTs, additional data 
can be collected and applied to the federated learning framework to make it more robust and 
secure. 
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