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Motivation

§ AI advancements, especially in 
Large Language Models (LLMs), 
have improved complex problem-
solving capabilities.

§ LLMs have excelled on challenging 
mathematical benchmarks like 
GSM8K, MATH and AIME.

🔹 Potential for creative problem-
solving with LLMs remains 
underexplored.
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§ Creativity = Novelty + Usefulness (Runco & 
Jaeger, 2012).

§ Usefulness = Correctness.
§ Novelty is harder to measure in 

mathematics.

Standard Definition of Creativity



How to Generate A Novel Solution with 
LLM?
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Challenges:
§ Abstract Nature of "Novel".
§ Difficult to control the degree of “Novelty”.

This does 
NOT work



Challenges:
§ Abstract Nature of "Novel".
§ Difficult to control the degree of “Novelty”.

How to Generate Novel Solutions with 
LLM?

§ Our approach: Generate new, correct solutions distinct from human-provided 
ones.

§ Novel Solution Generation:
🔹 Input: A math problem + k known solutions.
🔹 LLM generates a new solution.
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Provide a clearer definition of novel = distinct.

Much easier
k can be used to control the degree. 
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Approach 1 (Algebra) Approach 2 (Geometry)



CreativeMath: A Benchmark Dataset
§ CreativeMath comprises high-quality 

mathematical problems from various 
competitions and their numerous solutions.

§ A broad range of mathematical topics, problem 
types, and covers different difficulty levels. 

§ 8 major US competitions: AMC 8, AMC 10, AMC 
12, AHSME, AIME, USAJMO, USAMO, and IMO.

6,469 problems with 14,223 solutions
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Dataset Creation

Data Collection
§ Source: Art of Problem Solving(AoPS).
§ Solutions submitted by competition participants.
§ Approximate the complete set of viable human solutions for each problem.
§ Earlier solutions are often the most common and intuitive, while later ones 

may build on previous methods, offer improvements, or introduce entirely 
novel algorithms. 

Data Cleaning
§ HTML to latex
§ Remove incomplete problem and solutions
§ Remove problems with images 
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STAGE 1: 
Novel Solution Generation

§ Generate a new solution that 
is distinct from k reference 
solutions.

§ k solutions are sequentially 
selected based on the order in 
which competitors uploaded 
their solutions on the website.

§ When k increases, the 
difficulty in generating novel 
solutions also increases.

• k ranges from 1 to n.
• n is the total number of available reference solutions.
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STAGE 2: 
Correctness and Novelty Evaluation

2.1 Correctness Evaluation
2.2 Coarse-Grained Novelty Assessment
2.3 Fine-Grained Novelty Assessment
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STAGE 2: 
Correctness and Novelty Evaluation
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STAGE 2: 
Correctness and Novelty Evaluation



Experiment Setting
Dataset: CreativeMath Subset
§ Randomly selected 50 problems/competition 

(400 math problems and 605 solutions with k 
varying from 1 to at most 5)

§ Limit prompt length to 3K tokens

§ 1K tokens are reserved for new solution 
generation. 

Evaluation Metrics

Evaluation Metrics
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How Effectively Can LLM Generate A Novel 
Solution?

Key Findings:
🔹Gemini-1.5-Pro excels in generating novel solutions.
🔹 Smaller and math-specialized models show lower performance in novelty generation.
🔹A clear distinction between traditional math problem-solving and novel solution 
generation.
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How Does kAffect LLM’s Performance?

Impact of k on Correctness

🔹When k increases, the correctness ratio 
increases. (Align with few-shot learning).

Impact of the Degree of Solution 
Availability (n − k) on Novelty

🔹When n-k decreases, novelty-to-correctness 
ratio drops.

Correctness increases Novelty decreases
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How Does Difficulty Level Affect LLM’s 
Performance?

Findings:
🔹 LLMs struggle with accuracy on 
harder problems, they are more 
likely to generate novel solutions 
when they do succeed.
🔹 A shift in the balance between 
familiarity and innovation

C
orrectness
decreases

N
ovelty 

increases

D
ifficulty

decreases
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Similarity Map Between Novel Solutions 
Generated By Different LLMs

Step 1: Measure pairwise similarity 
between the outputs of various LLMs.

Step 2: Map similarity matrix into 2D 
plane with Multidimensional Scaling 
(MDS).

Findings:
🔹 Low similarity between the novel 
solutions generated by different LLMs.

🔹 Leverage LLMs on the periphery to 
generate diverse solutions.
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Conclusion

🔹 CreativeMath Dataset: Introduced a dataset to assess LLMs' 
creative problem-solving.
🔹 Framework: Developed a system to generate novel solutions and 
measure both accuracy and innovation.
🔹 Key Findings: Found significant variability in LLMs' creative 
abilities.
🔹 AI Advancement: Stressed the need for AI to offer original insights, 
not just correct answers.
🔹 Future Research: Encouraged deeper exploration of LLM creativity 
in complex domains like math.
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Thank You
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