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Correctness Ratio increases Novelty Ratio decreases

 Motivation: AI models like GPT-4 and Gemini-1.5-Pro excel at solving math 
problems, but can they think creatively?

 Key Question: Can LLMs propose new, innovative mathematical solutions, or are 
they just mimicking human approaches?

 Existing Gap: Most benchmarks only test correctness, ignoring creativity in 
problem-solving.

 We introduce CreativeMath, a dataset and evaluation framework to assess LLMs’ 
ability to generate novel solutions after seeing known ones.

Problem Definition
 Creativity = Novelty + Usefulness (Runco & Jaeger, 2012) [1]
 While correctness = usefulness, novelty is harder to measure in mathematics.
 Traditional math AI research focuses on accuracy, but we evaluate solution 

diversity and originality.
 Example: Given a geometry problem with 2 known solutions, can an LLM propose 

a different, valid approach?

CreativeMath: A Benchmark for Mathematical Creativity
Dataset Curation

 Source: 6,469 problems & 14,223 solutions from AMC 8, AMC 10, AMC 12, AIME, 
USAJMO, USAMO, IMO

 Coverage:
•  Difficulty Levels: Middle school to Olympiad
•  Topics: Algebra, Geometry, Combinatorics, Number Theory, etc.
 Data Source: Art of Problem Solving (AoPS) – A complete repository of diverse 

competition problems and human solutions [2].

Goal: Test if LLMs can generate new, correct solutions distinct from human-provided ones.
1⃣ Novel Solution Generation:

 Input: A math problem + k known solutions.
 LLM generates a new solution.

2⃣ Correctness Check: Is the new solution valid?
3⃣ Coarse-Grained Novelty: Compare against k reference solutions.
4⃣ Fine-Grained Novelty: Compare against all human solutions (n total).

Prompt Templates

Figure 1: Distribution of problems across different math 
categories and competitions in the CreativeMath dataset.

Figure 2: Distribution of the number of solutions 
per problem across different competitions.

Figure 4: The prompt template for generating 
novel solution.

Figure 5 
(top): 
The prompt 
templates for 
evaluating the 
correctness of 
the generated 
solution.

Figure 5 
(bottom): 
The prompt 
templates for 
evaluating the 
novelty of 
the generated 
solution.

Figure 3: The framework includes solution generation (left) and the evaluation pipeline (middle). The flowchart of the 
detailed evaluation pipeline is illustrated on the right.

Table 1: Evaluation metrics and their definitions.

Results & Key Findings

Table 2: Experimental results for various closed-source and open-source LLMs on the CreativeMath subset 
(↑ indicates that higher is better). 

Table 3: Correctness Ratio (C) across different models 
with varying numbers of reference solutions (k).

Table 4: Novelty-to-Correctness Ratio (N/C) for different models 
based on the degree of solution availability (n−k).

Key Insights:
 Gemini-1.5-Pro excels in generating novel 

solutions.
 Smaller and math-specialized models show 

lower performance in novelty generation.
 A clear distinction between traditional math 

problem-solving and novel solution generation.

How does k affect the performance?

How effectively can the LLM generate a novel solution?

 When k increases, the 
correctness ratio increases. (Align 
with few-shot learning).

 When n-k decreases, novelty-
to-correctness ratio drops. This 
indicates tightening the 
constraints, making it harder for 
the model to generate new 
solutions.

Figure 6: Similarity map between the novel 
solutions generated by different LLMs.

Table 5: Average Correctness (C) and Novelty-to Correctness 
Ratio (N/C) for all LLMs when solving math problems of 
varying difficulty levels, with k = 1 across all competitions.

How does difficult affect the performance?

 LLMs struggle with accuracy on harder problems, 
they are more likely to generate novel solutions when 
they do succeed.

 A shift in the balance between familiarity and 
innovation.

 Leverage LLMs on the periphery 
to generate diverse solutions.

Similarity between novel 
solutions generated by LLMs

decreases

increases

Conclusion

 CreativeMath Dataset: Introduced 
a dataset to assess LLMs' creative 
problem-solving.

 Framework: Developed a system 
to generate novel solutions and 
measure both accuracy and 
innovation.

 Key Findings: Found significant 
variability in LLMs' creative abilities.

 AI Advancement: Stressed the 
need for AI to offer original insights, 
not just correct answers.

 Future Research: Encouraged 
deeper exploration of LLM creativity in 
complex domains like math.
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